PHYSICAL REVIEW E 69, 061113(2004

Calculations of free energies in liquid and solid phases:
Fundamental measure density-functional approach
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In this paper, a theoretical description of the free energies and correlation functions of hard¢s{ere
liquid and solid phases is developed using fundamental measure density-functional theory. Within the frame-
work of Weeks-Chandler-Andersen perturbation theory, free energies of liquid and solid phases with many
interaction potentials can be obtained from these characteristics of the HS system within a single theoretical
description. An application to the Lennard-Jones system yields liquid-solid coexistence results in good agree-
ment with the ones from simulations.
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I. INTRODUCTION a fundamental measure density-functional theory. Namely,
we can obtain the properties of liquid and solid phases for a
Free energy is an important thermodynamical characteris-S reference system within a single theoretical framework.
tic of condensed matter systems. If the dependence of fregxt the same time, our approach can be generalized to multi-
energy on temperature and the bulk density is known mangomponent systems since the fundamental measure density-
other thermodynamic quantities of the system, such agunctional theory is known to provide accurate results for
chemical potential, pressure, compressibility, can be calcumixtures[18,19.
lated. It also becomes possible to study phase behaviors, This paper is organized as following. The modified WCA
critical temperatures, interfacial properties, and so on. perturbation theory for the free energies of liquid and solid
Calculations of free energies using numerical experiphases is presented in Sec. Il to set up the stage for our
ments: Monte CarloMC) or molecular dynamic§MD) theoretical development. The fundamental measure density-
simulations yield accurate results, but still are time-functional theory is described in Sec. Ill and applied in Sec.
consuming process¢s]. Perturbation theoretical approaches |V to calculate the free energies and correlation functions of
to the calculations of free energies in fluii®s-8] and solids  HS liquid and solid phases. The results of Sec. IV are used in
[9,10 present an attractive alternative. One of the most reliSec. V to compute the free energies of Lennard-Jones liquid
able perturbation theories for free-energy calculations waand solid phases. Some conclusions are given in Sec. VI.
developed by Weeks, Chandler, and Ander6aiCA) [2,3]
for Lennard-JonegLJ) fluid and was later generalized to
fluids near the freezing ling8] and also to solid$9,10. In  !l. PERTURBATION THEORY FOR THE FREE ENERGIES
the framework of WCA theory the free energy is separated OF LIQUID AND SOLID PHASES
into two contributions: one of them is the free energy of an |
appropriate reference system whereas the second one is t%
perturbative part. In general, a hard-sph@t&) system with arts:
an appropriate HS diameter is chosen as the reference S)PS- '
tem, and the correlation function of that HS system is also V(r) =Vy(r) + Vy(r), (1)
utilized in the perturbation calculations. A recent version of ) )
WCA theory [10] allows to calculate the free energies both WNereVo(r) is the short-ranged steeply repulsive part
of liquid and of solid phase within a unified framework. It {V(r) -B(r), r=\
Vo(r) =

n the framework of WCA perturbation theory, the inter-
lecular isotropic pair potentid¥(r) is divided into two

has been successfully applied to the free-energy calculations (2
of liquid and solid phases with different types of intermo- 0, r>X

lecular potential§10-13. In those studies properties of the and\V,(r) the weaker long-ranged attractive part

HS reference system were obtained from MC or MD simu-

lation results. For example, HS radial distribution functions _JB@), r=Ax

of liquid and solid phases are parametrized using simulation Va(r) = V(r), r>\. 3)

data[9,11,13,14, so are the HS free energies of liquid and _ ) )

solid phase$15,16. Such a strategy is quite successful for aThe first one is tre_ated as a re_fer_ence pote_ntlal and second
single component system, but the parametrization of multione as a perturbat|on. To trefat liquid and solid phases on the
component systems will become extremely demanding angame footing, the parametris chosen a$10]

theore_ztlcal approaches, such as mtegral e_quaﬁ(hﬁ!}s do N=r +s(p)(ag—1). (4)

not yield accurate results as the simulations yet. In the

present work we developed a unified theoretical approach dfierer” is the distance where the potentiahas a minimum,
calculating the free energies of liquid and solid phases using, is the nearest-neighbors distance of the solid lattice and
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0, pP=p1
(p = p1)[6p° = 3(5p, = p1)p + 10p5 = 5p1p, + pi]
s(p) = 4 ¢ M e 2L p<p<p, 5
(p2—p1)
1, p2<p-

In this equatiorp;=0.97, p>=1.01p., andp, is the density +oo, r=d

wherer”=a.. If p=p, (the solid$ then Eqs(4) and(5) give Vhs(r) :{ 0 r>d (12)
A=a.. If p<p, (the liquid casgthis choice reduces to the ’ ’

WCA separatiom\=r". At high densities near the freezing whered is a temperature dependent hard-sphere diameter
line an equilibrium nearest-neighbor separation will lie since a lot of information about the HS system was collected
closer tor =a, rather tharr=r" due to the strong repulsion of from theoretical treatments and numerical experimghts.
other molecules. Such a choice makes the rang®yf) To approximate the reference system with the intermo-
shrink with density. It reduces the corresponding HS diam{ecular potentiaMy(r) by a HS system, the hard-sphere di-
eter and allows to avoid difficulty associated with the meta-ameterd is chosen to satisfy the equati¢®)

stable HS fluid.

The functionB(r) is equal to JdF(e‘ﬁVO(” — Ay (r/d) = 0, (12)
B(r) =V(\) - (dV_(r)) (N=T). (6) where B=1/kgT (kg is the Boltzmann constant, tempera-
dr /o=y ture), yys is the cavity function[11,22 of the HS system.

With such a choice of HS diameter, the reference sydtgm
More details of the potential separation can be found in Refand G, are related to the ones of the HS system Bg:

[10]. =FustO(6) andGy=0us+O(8). The small parameted is
The free energy can be exactly expresse{as equal to
A 2
1 ! N N — L_ E —BVo(r)
Flp0)= Flp()+ 5 [ | araiyiranp (e g fo dr(dB 1] e, 13
0
(7 and
A
Fop(N] is the free energy of the reference systémr0), dB:f dr(1 —eA) (14)
and « is the coupling parameter for the interaction potential 0

V(r; ) =Vy(r)+aVy(r). p?(F;,,;a) is the pair distribution
function when the potential i¥(ry,; @) but the density is
p(F). To lowest order approximation, E¢7) yields

is the Barker-Henderson diamefé.
Instead of Eq(12) we will use a fast and accurate but
approximate way of solving fod with help of the formula

(13,
1

Flp(N]=Fdp(N]+ Ef Ay dipVa(rp)pg (T i), (8) oy
d=dB<1+—5>, (15

20'0

which can be also written d21] where

1 = =d), 16
FloOIN=FdpOIN+ 30| dVA0Bo0), (@ 0=Vl =) 19
01 = 200+ [dyng/dX]|x=r/=1 17

where N is the number of particles angy(r,,) the angle-

averaged correlation function in the reference system [Eq. (15) is obtained from Eq(12) as an expansion on the

small parametets [13] by neglecting the extremely small
) high-order term offy dr(r/dg—1)3de Vo) /dr; for example,
~ - d0 | di,p@(F,.Fy). 10 for Lennard-Jones system with temperatufes0.75,2.74
Go(r 12 477Vp2f f pg (L T2) (10 this term is 10" and 10°° respectively.

In the WCA framework, the reference system is further Using the above equations, we finally have

approximated by a hard-sphere system with the intermolecu- 1 5
lar pair potential Flp(N]/N=Fydp(H]/N+ Epf diV(r)gug(r/d). (18)
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To yield accurate results of the free energy in Bd), the d
HS free energyFys and correlation functiofijs for liquid wy(y) = 5(5 —y). (24)
and solid phases are obtained from simulations. In this work
we will get the properties of the HS reference system by
using a theoretical approach rather than numerical simula- ws(y) :@)(9 —y), (25)
tions. Namely, we will use fundamental measure density 2
functional to calculate the free energies and correlation func-
tions of both liquid and solid phases within a single d
framework. @y, (Y) = 6,6 (5 - y) : (26)

IIl. FUNDAMENTAL MEASURE d
DENSITY-FUNCTIONAL THEORY o(y) = éyéy(‘i (5 - y) . (27)

The density-functional theor§DFT) is a powerful tool for . o
studying the properties of fluids and soli¢see review of Here, €, is a unit vector along the direction, O(r) the
Evans[20]). In the framework of DFT, the hard-sphere free Heaviside step functiong(r) the Dirac delta function, and
energyFys is considered as a functional of number densi'[y(f)v2 and @ are the vector and tensor weighted densities, re-
profile p(r). It consists of two parts: an ideal-gas contribution spectively.
Fialp] and the excess free ener§ylp] over the ideal-gas The excess part of the free energy can be written in the

part following form:
Fud p(F)] = Figlp(D)] + Fel p(N)], 19 >
wd (1] = Fial p()] + Felp()] (19) oS [ aoin 08
where i=1
where
Fidlp(N)] =kgT f dVp(N(In[p(N]-1). (20
D= Zin(1-ny), (29)
[In this work, thekgTN In(A3) andkgT In(A3) contribution md
to the free energy and chemical potential respectively are
neglected since they do not affect our results besides a tem- ng - nﬁ
perature dependent constark. is the thermal de Broglie <I>2:d—2, (30)
wavelength] 2md(1-ny)
The grand canonical potential functior@;s can also be gpq
constructed
O3 =f3¢h3(Ny). (31

QHS[P(F)]zFHS[P(m_J difup(N -UM], (2D various approximations of FMT employed different func-
tions f3 and ¢ in Eq. (31).

whereu is chemical potentialJ(r) is the external potential. The first approximation of; and ¢»; was given by Rosen-
The variational principle feld [28]:
3 2
29} r Ny = 3nyn;
HS[—Pm =0 (22) f(3Vl) _ 2—22 (32)
op() |, 247

determines the equation for the equilibrium density profile inand
an external potential.
Various approximations to the density functional have PY) _ 1
been proposed23—-27 to construct the excess free energy T -ny)?’
Fey for the HS system. In our study we will apply the fun-
damental measurg¢FM) density functional proposed by and we will denote this version of the theory A&PY.
Rosenfeld[28] and extended by many othef$9,29-31. In the homogeneous limit the functional Eq28)+33)
Below we list the main equations of FMT for one-componentrecover the Percus-Yevick excess free-energy density. Func-
HS system used in this work. tional derivative of theF,, in the homogeneous limit yields
First of all a set of weighted densities is defined the PY pair distribution function. In the 1D limihard rod3
it reproduced the exact density functional of 1D system. Al-
5 Lo, though the functional is successful for the description of lig-
Na() :f dr'p(r') w,(r = r') (23) uids it completely failed to describe liquid-solid coexistence.
The problem was overcome partially in R¢29] with the
with the density-independent weight functiong given by introduction

(33
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2_n2)3 6 T T T T T T T T T T T
f (3\/2) = w (34) - \\_//
247Tn2 5F \\\ :
(denoted a¥/2PY). A systematic way to improve the Rosen- > 4r \\\\ ............... : _F ]
feld functional lies in the fact that in theD0limit (a spherical 2 3'_ \:\\\ e —- EsE,
cavity holds no more than one partigléhe excess free- = Sug” T ErRhs
energy functional should satisfy exactly known solution, = T s — FSFE 4FAF,
which is crucial to describe solids. Using this dimensional : e ]
crossover argument, a new versi@enoted as'1PY) [30] | RN
USIng G .:. | L 1 " 1 " | L 1 "
9 0 50 100 150 200 250 300
£ = ——def, (35) od”
167

. . FIG. 1. Contributions of different terms in the free-energy func-

and a variatior(denoted ag2PY) [31] with tional to the free-energy densigF,s/V at pd®=1.05 usingT2CS
3 . .. . ~ " . .

f? = E[nvznnvz - nznfz— tr(A%) +nytr(7®]  (36) For the fcc solid phase of a HS system, using the symme-

try of the crystal the volume of integration can be reduced to
can be used to describe many properties of HS solids. Fd simplex corresponding to 1/48 of the unit cg4]. The
example, the version Witﬂ)szfgz)(ﬁgpy) (T2PY) yields cor-  contributions from all 13 sites of the unit cgfbr fcc lattice)

rect asymptotics for the HS fcc lattice near close packing the total weighted densities can be calculated. For a given

density and even can be used to describe the metastable Hglk density the functional dependence of the solid free en-
bcce lattice[31]. ergy on the Gaussian parameteof density distributiorfEq.

The @ contribution can also be improved to describe the(38)] was plotted in Fig. 1. The minimum of this function
fluid phase better, namely, in the limit of bulk density the gives the equilibrium values of free energy and parameter
Carnahan-StarlingCS) equation of fluid state should be re- Figure 1 illustrates the different contributions from the de-
produced rather than the PY equation of state. Recentipendence ofSFs/V on a for pd®=1.05 (whereF;=[di®;,

[19,32,33 this has been achieved by the introduction of ~ 1=1,2,3. For all versions of FMT excepV1PY, Fig. 1 is
qualitatively the same.
cs_2 i( s, In(1-n )> 37) The dependence of equilibrium free energiFys/N on
37 2\ (1-ny? ¥v) the densitiepd® is shown in Fig. 2. The calculated results

o ) ) (T2 are in excellent agreement with MC simulatigids)].
A combination of this function withf; " yields a new The correlation function can be calculated using the ap-
version of functional®,=f;? ¢ (denoted ag2CS was  proach of Rascoet al. [35,3§. In contrast to liquid phase,
discussed in detai[19,33. For instanceT2CS version of  the structural properties of a solid phase is mainly deter-
FMT gave the best values of the coexisting HS liquid andmined by one particle density(r). Let p(f,) be the density
solid densities. This is the version that we will use to com-probability of finding a particle at, without fixing any other
pute properties of HS liquid and solid phases. Some detailgarticles. The probability density of finding a second particle
of calculations of the weighted densitigs,} can be found in at 7, provided the first particle is already fixed ftis equal
Appendix A. to p@(ry,M,)/p(Fy). Thus, two angular average probability
densities can be defined
IV. PROPERTIES OF LIQUID AND SOLID PHASES
OF THE HARD-SPHERE SYSTEM 15 T T T T T

A. Free energies and correlation functions of HS solids L o MC

In a solid the density profile can be approximated as a
sum of identical Gaussian peaks centered at the lattice sites

R,

. 32 -
p(F) =3 palF - m:(%) SR (39

Given the weighted functions in Sec. Il the weighted

density can be written as 0 1.1 12 1.3

()= 3 (- R). (39 pd’

) N FIG. 2. Dependence of the free-energy dengify,s/N on pdq.
Moreover, the scalar, vector, and tensor weighted densitieResults of the present theof§2C9 are plotted as a solid line, MC
n(A“)(F) can be found in analytical formsee Appendix R simulation result§16] as diamonds.
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g
g(r)

r/d

FIG. 4. Pair distribution functiorg(r) for the solid atpd®
=1.05. The solid line corresponds to the result of the present theory.

FIG. 3. Details of the first peak of the pair distribution function The dashed line is the Monte Carlo resylta].

G(r) for the solid atpd®=1.04 for MC simulation result§l1] and
different versions of the fundamental measure density-functional

theory (DFT). (1) Virial theorem:
BPIp=1+475(d). (45)
PROE 2 zf drdQp(ry)p(ry+1), (40) (2) The normalization ofg; to the nearest-neighbors
mVp .
number:
and 1
T = [ a0 =1 (@5)
g(r) = —2 f drlde(Z)(rlvrl + F)v (41) nl
47\Vp

(3) The mean location of the nearest neighb@is
whereg©(r) is the correlation function when the particle at
the origin is not fixed andj(r) is the correlation function,
which describes the structure of solid in the “external” field
of the particle fixed at the origin. It can be shown that the
functiong(r) should be used for the perturbation calculationsUsing the already found dependence of pres$ueada on

1

1
n=: f ditpGy(r) = - f dirpg ’(r).  (47)

of the free energy in Eq18) [21]. thgdensityp in the gquations above all the successive peaks
Putting Eq.(38) into Eqg.(40), the correlation functiog®  ©f 9(r) can be obtained.
can be reduced to the sum of contributio@f@ from the We have calculated the correlation functions using the
successive peaks of lattice siti5] different versions of the fundamental measure density-
functional theory. It is foundsee Fig. 3 that the results of
N o \V2galr =R)%12 | gralr + R)?12 the T2 versions of the theory gave the best agreement be-
g; (= ?PRi o ; tween the contact value of the correlation functions from our

calculation and MC simulationgll]. Thus, we are mostly

. interested in th&2CSversion of the theory since it gives the
(i>0), (42) best liquid and solid properties. For this version the resulting

wheren; is the coordination number of shéllandR; being ~ correlation functions agree very well with the MC results

the corresponding radius. Rascenal. [35,3§ showed that [11] for the various densitiegFigs 4 and . (For the low

for small value of compressibilityr=(dp/d(BP)); (whichis ~ densities the compressibilityr gets higher and, thus, the

the case for HS solidsthe successive peaks Gfr) differ ~ Sum rule[Eq. (47)] gets less accurat6]; as a result near

negligibly from the ones 6§ ©(r) except the first peak with Melting density the agreements get a bit worse. There are

i=1, thus,
30 T T T T

§() =N+ 2§ 00). (43) 250 1
i=2
. o 20 -
The first peak ofj(r) (denoted a§j;) is due to the nearest o
neighbors which bear the most important part of the short- % 15
range correlations and can be parametrizefBap 10 .
g aa(r —rp?2 50 1
Oi(r)=A——, 44 [ -
9.(1) r (44) 1 15 2 25 3
r/d
where the parametes, «;, andr, can be found from the
sum rules conditions given below. FIG. 5. The same as Fig. 4 exceut>=1.35.
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also no significant differences also if any other DFT ap-
proaches are usedrhus, all of our later calculations will be
based upon th@2CSversion of the DFT theory.

B. Correlation functions in HS liquid

In the homogeneous limit th&2CS version of the FM
functional reduces to the CS free enefd¥p],

7](4 _ 377) 1 1.5 2 2.5 3

, (48) d
(1-7)?
. . . FIG. 6. Pair distribution functiorg(r) of liquid at densities
_ 3
where 77_(7/6)pd IS th.e p_aCk'”g fraction. ~_ pd®=0.7,0.8,0.9,1.0. The solid line is the result of our theory, the
To describe the HS liquid structure we note that in a liquidgashed line is the result of MC simulatiofi3]. For clarity, curves

phase the density profile(r,) seen from the origin is just the for ,d3=0.8,0.9,1.0 are shifted upwards by 1,2,3, accordingly.
bulk densityp. Fixing a test particle at the origin leads to the

short-ranged density profilg87] p@(fy,F1+1)/p=pg(r). It

BFugN=In(pd®) - 1 +

_ low densitiespd® are almost the same, with the some differ-
can be seen from Eq10) and(41) that in the homogeneous  gnce arisen for the high densities. It is also seen from Fig. 6

limit the correlation functiorg (r) andg(r) in solid reduce that for all the densities that the DFT correlation functions
to 1 andg(r), respectively. Hence the pair distribution func- 5re in excellent agreement with the MC results of Verlet-
tion in a liquidg(r) is equal to the density distributiqitr) of  \weis[13] (for the high densitypd®=1.0 the agreements get a
particles in the external potential created by the test particlgt worse.
fixed at the origin divided by the bulk densipy[37], The pair direct correlation functioti? in liquids can also
g(r) = p(r)/p. (49) be obtained as the second functional derivative of the excess
free energy in the homogeneous limit. Since the present
The density distributiorp(r) can be calculated from the so- functional employs the weight functions of FMT based on
lution of the integral equation obtained from the variationalone center convolutions it cannot accounts for the decaying
principle for the grand canonical potentidd,s Egs. tail of c?(r) in the regionr >d. As a result the functiog(r)
(199+22) and(28) obtained fromc'?(r) via the Ornstein-Zernike equation does
not yield results which are in good agrement with the simu-
p(r) = expl— SBF [ p(N]/8p(F) + B( = U(r))} (50) lations. Possible improvement of the theory requires the in-

with clusion of the two-centers convolutiof%9,33.

(8- 97+ 37)

— 3
Bur=1In(pd”) + 7 1-7)° (51) v, LENNARD-JONES LIQUID AND SOLID COEXISTENCE

andU(r)=Vug(r). In this section we will apply our method to a simple

Note that similar equation as EG0) was used in Ref, Model system with the Lennard-Jon€sJ) intermolecular
[32], but for a different version of the Rosenfeld functional, potential, whose liquid-solid coexistence behaviors are well

namely for one witrﬂ>3:f(3V1)¢(C9 (versionV1CS). The de- known from simulations,

tails for the calculation oﬁ,BFé‘”/&p(F) in Eq. (50) can be 12 ;6
found in Appendix C. V() = 46(ﬁ - F) : (54)
This integral equatiori50) can be solved by the iteration
method, i.e., at it$-step wheree ando are the energy and length parameters of the LJ
) L potential.
Pl = pl) = ApD (52) Using the correlation functions of the reference HS solid

. ) _ ] and liquid from the DFT calculations the iterative solution of
whereA is the integral operator on the right-hand side of Eq.the equation for the HS diametdr[Eq. (15)] can be found.
(50). There is a problem for the convergence of the methodrgr some given temperatur@s=KksT/€=0.75,2.74 and vari-
namely the weighted functiony(r) at the smallr is higher  oys |iquid and solid densitiep’ =po® the free energies
than 1, a signature_ thdt_l termis an apprpximation in three  gFEI/N=pgF/N-In(pd3)+1 both in liquid and solid phases
dimension. To avoid this we used a mixing scheme, were obtained with the help of E¢L8). Some of the results

(i+1) _ () 0! are given in Table | and they are in excellent agreements with
Pin = KPourt (1= K)pin, (53 the results of MC simulationf8,10].
with the small mixing parametek, which depends on the At the fixed temperaturd the coexistence of solid and
bulk density. To speed up drastically the convergency of itliquid phases required the equality of the chemical potentials
erations Eqs(50), (51), and(53), we developed the special w and pressurePB in the both phases. The coexisting liquid
optimization method. We have found that the correlationp, and solidp, densities can be calculated using the Maxwell
functionsg(r) from theV1CSandT2CSversions of FMT for  double-tangent construction, i.e., the condition when
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TABLE I. Excess(with respect to an ideal gas at the same the free energies and correlation functions in HS liquid and
temperature and densjtjree energy per partici8F®*/N for  solid phases. These properties of the HS systems were used
the Lennard-Jones system obtained from MC simulat|8i5)  in the WCA perturbation theory to calculate the free energies
and the present theory. Values of the HS packing fraction hoth in solid and liquid phases of the Lennard-Jones system.

=(m/6pd*) obtained in this work are also given. The obtained results are in a good agreement with simula-
tions.
BFXIN BF'IN U The present study can be extended along several direc-
MC simulations This work tions. For example, such a approach can be used to compute

phase behaviors of simple metallic systefh&] and also of

T_ =9'75 the multicomponent mixturgalloy) systems[39]. Another
Liquid possible application of this approach is the theoretical de-
0.7 -4.17 -4.15 0.393  gcription of the solid-melting interfacl0,47 of the differ-
0.8 -4.47 -4.45 0.448  ent substances.
0.84 -4.53 -4.50 0.469
Solid ACKNOWLEDGMENTS
1.0 —-4.48 -4.52 0.566
1.025 -4.41 -4.47 0.574 This research was sponsored in part by the Division of
11 —4.17 —4.11 0.595 Materials Sciences and Engineering, Office of Basic Energy
T=274 Sciences, U. S. Department of Energy, under Contract No.
Liquid W-7405-ENG-82 with lowa State Universitgv.B.W. and

q X.S) and by NSF Grant No. CHE03037%8.S.).
0.2 -0.04 -0.03 0.098
0.4 -0.01 0.005 0.194
0.7 0.38 0.36 0.337  APPENDIX A: WEIGHTED DENSITIES IN THE LIQUID
0.8 0.65 0.63 0.384 At Appendixes A and B we summarize some properties of
0.9 1.05 1.02 0.429  the weighted densitie@art of them was provided already
1.0 1.58 1.56 0.473  somewherg29,34) and also we will give some new details
1.1 2.31 2.27 0.504  of calculations.
Solid To transform the expression for the weighted densities
1.2 3.138 3.162 0.541 [EQ. (23)] the vectory=r—r’ can be introduced ang?=|f
1.3 4.074 4,052 0.564 —r'|?=r?+r'2-2rr’ cos @ (¢ is the angle between the vectors
1.4 5.31 5.19 0.584  r andr’). With the fixedr=|r] andr’=|r’| it follows that|r
1.6 9.01 9.04 0.620 -r'|<ys<r+r’ andr’ sin 6do=1/r ydy (y=ly|). Using this
1.8 14.91 14.95 0.643 the three-dimensional integral reduces to two one-
20 23.74 23.79 0.660 dimensional integrals
2.4 53.63 53.69 0.684

20 (7 N r+r’
() = Tf r'drip(r’) ‘ ‘wa(Y)ydy- (A1)
0 r-r’
BFsoiig/ N and BFjiquiq/ N plotted versus the inverse densities
pa> have a common tangent. For=0.75 we found that the Using the Rosenfeld expressions for the scalar, vector, and
coexisting densities and the Lindermann ratio @90.959, tensor weight functiongEqgs. (24)—(27)] all the interested
p =0.860 and 0.13; and foF' =2.74, p,=1.214,p,=1.155  weighted densities can be found. Such, the scalar weighted
and 0.12, which are very close to the results obtained by MG@lensitiesn, andn; reduce to one-dimensional integrals
simulations[38] p.=0.973, p; =0.875, 0.15 ang,=1.179,
p =1.113, 0.14 respectively. If different theories would be wd (Y2
applied to computeFq,ia/N and BF¢yia/N the differences ny(r) = _f dr'r’p(r’) (A2)
in the models could affect significantly on the results of co- !
existing densities. In our present approach the solid and lig;
uid free energies are obtained within a single theoretica?
framework, thus, such errors are avoided. r+di2 2
a
na(r) =7f dr’r’[z—(r —r’)z}p(r’)

r-di2|

[r=d/2]
VI. CONCLUSIONS

d/2-r
In the present study we have developed a theory to calcu- +®(§ - r>47TJO dr'r'?p(r’). (A3)
late the free energies of liquid and solid phases within a
single theoretical framework. To this end the fundamental To transform the expressions for vector and tensor densi-
measure DFT was applied to the theoretical calculations ofies we write
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&= COSH8, + sin 68, (A4)

(9is the angle between the vectdgrandy; & andé, the unit
vectors to be parallel and perpendicular to thdirection).
Using r'2=|r-y|?=r?+y?-2ry cos§ we find that

y2 + r2 _ r12

cof=—_—"",
2ry

[4r2r 12 _ (y2 _ r2 _ r/2)2]1/2
2ry

Finally, putting Egs(26), (27), and(A5) into Eq. (Al) the
vectorﬁv2 and tensoin weighted densities can be found as

sind= (A5)

ﬁvz(f) = nvz(r)é3y

3 3
AR = 2 A (1) = > ni(néé, (A6)
i=1 i=1

whereé,, €, andé&; are the unit orthogonal vecto(g;=¢,)

and
T r+d/2
nuz(r) = ﬁf

d2
dr’r’(rz— r'2+ " )p(r’), (A7)
[r=d/2|

r+d/2
dr'r’

Nya(r) = npy(r) = Tz‘dj

[r=d/2|

2 2
x[4r2r’2— (dz —-r'2- r2) }p(r’), (A8)

r+d/2 2
T d

Nas(r) = —— dr'r'{ — -

33( ) r3d fr_d/z <4

From Eqgs.(23)—(27) the relations,

2
r'2+ rz) p(r’). (A9)

fi,,(F) = = V(1) (A10)

tr(A(M) = ny(r),

also follow, which are useful to check the results.
In the bulk with p(r)=p the expressions EqéA2), (A3),
and(A7)—A9) reduce just to

(A11)

T T
n,=mpd?, nyg=—pd®, n, =0, 5

6 2= M=

Pd25|j-

(A12)

APPENDIX B: WEIGHTED DENSITIES IN SOLID

When the density(r) is given by the Gaussian distribu-

tion around the zerg,(r)=(a/m)%%exp(-ar? the corre-

sponding weighted densities can be found analytically from

Egs.(A2), (A3), and (AB)~(A1l),

PHYSICAL REVIEW E69, 061113(2004)

d
n(AZ)(r) - E \/g(e—a(dIZ -n2_ e—a(d/2 + r)z)' (Bl)

n(A3)(r) = %{erf[\’;(g + r)} + erf[\r’ze - r)}

g a(@2 -7 _ graldi2 + r)T

+ — (B2)
rvam
1 +e—2ard 1
ny?(r) = (m - ﬁ)n(ﬁ(r), (B3)
(Uz)
ny2(r)
g =nf?(n=="—=,
adr
39 @ 2ny?(r)
ny”(r) =ny(r) - ———. (B4)
adr

The total scalar, vector, and tensor weighted densities are
the sum of the contributions from the different lattice sites
[Eqg. (39)], moreover, the vector and tensor contributions
must be transformed to a common reference frame. To this
end we introduce the laboratory-fixed frant@,é,,€,) re-
lated to the crystal lattice planes. As a result the three posi-
tion () dependent vectorg,;, €,, andé&; in Eq. (A6) can be
transformed as

&M= 8., (i=1230a"=xy,2 (B5)

with the transformation matri42]

X
-~ = 0
p p
Xz Yz p
A=fa (=] -= -= = |, (B6)
pr pr r
x ¥ z
r r r

wherep=(x2+y?)12,

Finally, in the reference frame the contributions from one
lattice site to vector and tensor densities with help of Egs.
(A6) and(B3)—«B6) are given by the expressions

() = n2()&(") = 3 12 (1)ag o (Néy, (B7)

3
Ax(F) = 2 i (& (N& ()
i=1

3
=2 2 nW(a . (Na (e, Ez.  (BY

i=1 a',ﬁ"
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CALCULATIONS OF FREE ENERGIES IN LIQUID AND..

APPENDIX C: CALCULATION OF 8BF©/ gp(r)

In this Appendix C we calculateSBF®?/8p(f) which
arises in Eq(50). It can be rewritten as

SBF & [p(7)1/8p(7) = 2 F (i), (C1)
where
Fa(F)=de’ 5@» w (T=1"). (C2)
an,(r')

So, the problem reduces to the calculation of ey ). To
do this, first of all the expression

. 2 +coo 5(1) r+r’
Fa(r)=—w r'dr’ Qf
rJo an,(r') v’

w,(Y)ydy (C3)

can be obtained from E¢C2) by the same way as E(R3)
was transformed to EqAL).
For the scalar weight functions with=2,3 Eqs.(A2) and

(A3) can be utilized forF,(r), F5(r) [in this equations the
functions 5®/én,(r’) or 8P/ éng(r’) should be substituted

insteadp(r’)].
To calculate the rest of the functioR&r) we write

od b -

= s c4
) ) 4

oD o - -
= ,i ,i .=1,2, y C5
é?]ii(F’) mii(r,)e © (I 3 ( )

Whereé’l, 5’2, and§’3 are the unit orthogonal vecto(§’3 is
directed along the vectar).

PHYSICAL REVIEW E 69, 061113(2004)

Next, as it was done at EqgA4) and (A5) the vectore,
can be written as

€= coshé’(af’3+sin~0’é’L (C6)

(EV is angle between the vectoysand F’), and the expres-
sions

Ay A2 oy2
cosl' =—/——,

2r'y
[4r2r/2_(y2_r/2_r2)2]1/2

2r'y

sin @' = (C7)
can be found.

Finally, putting Eqs.(26), (27), and (C4—C7) into Eq.
(C3) we have

r+di2 2
d 5D
g (r):ff dr'<_”'2‘fz> ~. (C9
? ' Jr-ar) 4 on, (r')
r+di2 5 ,
1 d
Fi(n =2~ dr’—,[4r2r’2—(—_rr2_rz) }
2rd g T 4
X——— (=12 (C9)
on;i(r')
and
r+di2 ’ 5
oD
F33(r):1f dr’—,(d—+r’2_r2> _
rdJaz 1"\ 4 ang(r’)
(C10
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