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In this paper, a theoretical description of the free energies and correlation functions of hard-sphere(HS)
liquid and solid phases is developed using fundamental measure density-functional theory. Within the frame-
work of Weeks-Chandler-Andersen perturbation theory, free energies of liquid and solid phases with many
interaction potentials can be obtained from these characteristics of the HS system within a single theoretical
description. An application to the Lennard-Jones system yields liquid-solid coexistence results in good agree-
ment with the ones from simulations.
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I. INTRODUCTION

Free energy is an important thermodynamical characteris-
tic of condensed matter systems. If the dependence of free-
energy on temperature and the bulk density is known many
other thermodynamic quantities of the system, such as
chemical potential, pressure, compressibility, can be calcu-
lated. It also becomes possible to study phase behaviors,
critical temperatures, interfacial properties, and so on.

Calculations of free energies using numerical experi-
ments: Monte Carlo(MC) or molecular dynamics(MD)
simulations yield accurate results, but still are time-
consuming processes[1]. Perturbation theoretical approaches
to the calculations of free energies in fluids[2–8] and solids
[9,10] present an attractive alternative. One of the most reli-
able perturbation theories for free-energy calculations was
developed by Weeks, Chandler, and Andersen(WCA) [2,3]
for Lennard-Jones(LJ) fluid and was later generalized to
fluids near the freezing line[8] and also to solids[9,10]. In
the framework of WCA theory the free energy is separated
into two contributions: one of them is the free energy of an
appropriate reference system whereas the second one is the
perturbative part. In general, a hard-sphere(HS) system with
an appropriate HS diameter is chosen as the reference sys-
tem, and the correlation function of that HS system is also
utilized in the perturbation calculations. A recent version of
WCA theory [10] allows to calculate the free energies both
of liquid and of solid phase within a unified framework. It
has been successfully applied to the free-energy calculations
of liquid and solid phases with different types of intermo-
lecular potentials[10–12]. In those studies properties of the
HS reference system were obtained from MC or MD simu-
lation results. For example, HS radial distribution functions
of liquid and solid phases are parametrized using simulation
data[9,11,13,14], so are the HS free energies of liquid and
solid phases[15,16]. Such a strategy is quite successful for a
single component system, but the parametrization of multi-
component systems will become extremely demanding and
theoretical approaches, such as integral equations[17], do
not yield accurate results as the simulations yet. In the
present work we developed a unified theoretical approach of
calculating the free energies of liquid and solid phases using

a fundamental measure density-functional theory. Namely,
we can obtain the properties of liquid and solid phases for a
HS reference system within a single theoretical framework.
At the same time, our approach can be generalized to multi-
component systems since the fundamental measure density-
functional theory is known to provide accurate results for
mixtures[18,19].

This paper is organized as following. The modified WCA
perturbation theory for the free energies of liquid and solid
phases is presented in Sec. II to set up the stage for our
theoretical development. The fundamental measure density-
functional theory is described in Sec. III and applied in Sec.
IV to calculate the free energies and correlation functions of
HS liquid and solid phases. The results of Sec. IV are used in
Sec. V to compute the free energies of Lennard-Jones liquid
and solid phases. Some conclusions are given in Sec. VI.

II. PERTURBATION THEORY FOR THE FREE ENERGIES
OF LIQUID AND SOLID PHASES

In the framework of WCA perturbation theory, the inter-
molecular isotropic pair potentialVsrd is divided into two
parts:

Vsrd = V0srd + V1srd, s1d

whereV0srd is the short-ranged steeply repulsive part

V0srd = HVsrd − Bsrd, r ø l

0, r . l
s2d

andV1srd the weaker long-ranged attractive part

V1srd = HBsrd, r ø l

Vsrd, r . l.
s3d

The first one is treated as a reference potential and second
one as a perturbation. To treat liquid and solid phases on the
same footing, the parameterl is chosen as[10]

l = r* + ssrdsac − r*d. s4d

Herer* is the distance where the potentialV has a minimum,
ac is the nearest-neighbors distance of the solid lattice and
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ssrd =5
0, r ø r1

sr − r1d3f6r2 − 3s5r2 − r1dr + 10r2
2 − 5r1r2 + r1

2g
sr2 − r1d5 , r1 , r ø r2

1, r2 , r.

s5d

In this equationr1=0.97rc, r2=1.01rc, andrc is the density
wherer* =ac. If rùr2 (the solids) then Eqs.(4) and(5) give
l=ac. If rør1 (the liquid case) this choice reduces to the
WCA separationl=r* . At high densities near the freezing
line an equilibrium nearest-neighbor separation will lie
closer tor =ac rather thanr =r* due to the strong repulsion of
other molecules. Such a choice makes the range ofV0srd
shrink with density. It reduces the corresponding HS diam-
eter and allows to avoid difficulty associated with the meta-
stable HS fluid.

The functionBsrd is equal to

Bsrd = Vsld − SdVsrd
dr

D
r=l

sl − rd. s6d

More details of the potential separation can be found in Ref.
[10].

The free energy can be exactly expressed as[20]

FfrsrWdg = F0frsrWdg +
1

2
E

0

1

daE drW1drW2V1sr12drs2dsrW1,rW2,ad.

s7d

F0frsrWdg is the free energy of the reference systemsa=0d,
anda is the coupling parameter for the interaction potential
Vsr ;ad=V0srd+aV1srd. rs2dsrW1,rW2;ad is the pair distribution
function when the potential isVsr12;ad but the density is
rsrWd. To lowest order approximation, Eq.(7) yields

FfrsrWdg = F0frsrWdg +
1

2
E drW1drW2V1sr12dr0

s2dsrW1,rW2d, s8d

which can be also written as[21]

FfrsrWdg/N = F0frsrWdg/N +
1

2
rE drWV1srdg̃0srd, s9d

where N is the number of particles andg̃0sr12d the angle-
averaged correlation function in the reference system

g̃0sr12d =
1

4pVr2E dVE drW1r0
s2dsrW1,rW2d. s10d

In the WCA framework, the reference system is further
approximated by a hard-sphere system with the intermolecu-
lar pair potential

VHSsrd = H+ `, r ø d

0, r . d,
s11d

where d is a temperature dependent hard-sphere diameter
since a lot of information about the HS system was collected
from theoretical treatments and numerical experiments[17].

To approximate the reference system with the intermo-
lecular potentialV0srd by a HS system, the hard-sphere di-
ameterd is chosen to satisfy the equation(2)

E drWse−bV0srd − e−bVHSsrddyHSsr/dd = 0, s12d

whereb=1/kBT (kB is the Boltzmann constant,T tempera-
ture), yHS is the cavity function[11,22] of the HS system.
With such a choice of HS diameter, the reference systemF0
and g̃0 are related to the ones of the HS system as:F0
=FHS+Osd2d and g̃0= g̃HS+Osdd. The small parameterd is
equal to

d =E
0

l

drS r

dB
− 1D2 d

dr
e−bV0srd, s13d

and

dB =E
0

l

drs1 − e−bV0srdd s14d

is the Barker-Henderson diameter[4].
Instead of Eq.(12) we will use a fast and accurate but

approximate way of solving ford with help of the formula
(13),

d = dBS1 +
s1

2s0
dD , s15d

where

s0 = yHSsr = dd, s16d

s1 = 2s0 + fdyHS/dxgux=r/d=1 s17d

[Eq. (15) is obtained from Eq.(12) as an expansion on the
small parameterd [13] by neglecting the extremely small
high-order term ofe0

l drsr /dB−1d3de−bV0srd /dr; for example,
for Lennard-Jones system with temperaturesT* =0.75,2.74
this term is 10−7 and 10−5 respectively].

Using the above equations, we finally have

FfrsrWdg/N = FHSfrsrWdg/N +
1

2
rE drWV1srdg̃HSsr/dd. s18d
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To yield accurate results of the free energy in Eq.(18), the
HS free energyFHS and correlation functiong̃HS for liquid
and solid phases are obtained from simulations. In this work
we will get the properties of the HS reference system by
using a theoretical approach rather than numerical simula-
tions. Namely, we will use fundamental measure density
functional to calculate the free energies and correlation func-
tions of both liquid and solid phases within a single
framework.

III. FUNDAMENTAL MEASURE
DENSITY-FUNCTIONAL THEORY

The density-functional theory(DFT) is a powerful tool for
studying the properties of fluids and solids(see review of
Evans[20]). In the framework of DFT, the hard-sphere free
energyFHS is considered as a functional of number density
profile rsrWd. It consists of two parts: an ideal-gas contribution
Fidfrg and the excess free energyFexfrg over the ideal-gas
part

FHSfrsrWdg = FidfrsrWdg + FexfrsrWdg, s19d

where

FidfrsrWdg = kBTE dVrsrWd„lnfrsrWdg − 1…. s20d

[In this work, thekBTN lnsL3d and kBT lnsL3d contribution
to the free energy and chemical potential respectively are
neglected since they do not affect our results besides a tem-
perature dependent constant.L is the thermal de Broglie
wavelength.]

The grand canonical potential functionalVHS can also be
constructed

VHSfrsrWdg = FHSfrsrWdg −E drWfmrsrWd − UsrWdg, s21d

wherem is chemical potential,UsrWd is the external potential.
The variational principle

U dVHSfrsrWdg
drsrWd

U
m

= 0 s22d

determines the equation for the equilibrium density profile in
an external potential.

Various approximations to the density functional have
been proposed[23–27] to construct the excess free energy
Fex for the HS system. In our study we will apply the fun-
damental measure(FM) density functional proposed by
Rosenfeld[28] and extended by many others[19,29–31].
Below we list the main equations of FMT for one-component
HS system used in this work.

First of all a set of weighted densities is defined

nasrWd =E dr8W rsr8W dvasrW − r8W d s23d

with the density-independent weight functionsva given by

v2syd = d Sd

2
− yD , s24d

v3syd = QSd

2
− yD , s25d

vW v2
syWd = eWyd Sd

2
− yD , s26d

v̂syWd = eWyeWyd Sd

2
− yD . s27d

Here, eWy is a unit vector along theyW direction, Qsrd the
Heaviside step function,dsrd the Dirac delta function, and
vW v2

and v̂ are the vector and tensor weighted densities, re-
spectively.

The excess part of the free energy can be written in the
following form:

bFex= o
i=1

3 E drWFihnasrWdj, s28d

where

F1 =
n2

pd2lns1 − n3d, s29d

F2 =
n2

2 − nv2

2

2pds1 − n3d
, s30d

and

F3 = f3f3sn3d. s31d

Various approximations of FMT employed different func-
tions f3 andf3 in Eq. (31).

The first approximation off3 andf3 was given by Rosen-
feld [28]:

f3
sV1d =

n2
3 − 3n2nv2

2

24p
s32d

and

f3
sPYd =

1

s1 − n3d2 , s33d

and we will denote this version of the theory asV1PY.
In the homogeneous limit the functional Eqs.(28)–(33)

recover the Percus-Yevick excess free-energy density. Func-
tional derivative of theFex in the homogeneous limit yields
the PY pair distribution function. In the 1D limit(hard rods)
it reproduced the exact density functional of 1D system. Al-
though the functional is successful for the description of liq-
uids it completely failed to describe liquid-solid coexistence.
The problem was overcome partially in Ref.[29] with the
introduction
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f 3
sV2d =

sn2
2 − nv2

2 d3

24pn2
3 s34d

(denoted asV2PY). A systematic way to improve the Rosen-
feld functional lies in the fact that in the 0D limit (a spherical
cavity holds no more than one particle) the excess free-
energy functional should satisfy exactly known solution,
which is crucial to describe solids. Using this dimensional
crossover argument, a new version(denoted asT1PY) [30]
using

f 3
sT1d =

9

16p
detn̂, s35d

and a variation(denoted asT2PY) [31] with

f 3
sT2d =

3

16p
fnWv2

n̂nWv2
− n2nWv2

2 − trsn̂3d + n2trsn̂2dg s36d

can be used to describe many properties of HS solids. For
example, the version withF3= f3

sT2df3
sPYd (T2PY) yields cor-

rect asymptotics for the HS fcc lattice near close packing
density and even can be used to describe the metastable HS
bcc lattice[31].

TheF3 contribution can also be improved to describe the
fluid phase better, namely, in the limit of bulk density the
Carnahan-Starling(CS) equation of fluid state should be re-
produced rather than the PY equation of state. Recently
[19,32,33] this has been achieved by the introduction of

f3
sCSd =

2

3
3

1

n3
2S n3

s1 − n3d2 + lns1 − n3dD . s37d

A combination of this function withf3
sT2d yields a new

version of functional,F3= f3
sT2df3

sCSd (denoted asT2CS) was
discussed in detail[19,33]. For instanceT2CS version of
FMT gave the best values of the coexisting HS liquid and
solid densities. This is the version that we will use to com-
pute properties of HS liquid and solid phases. Some details
of calculations of the weighted densitieshnaj can be found in
Appendix A.

IV. PROPERTIES OF LIQUID AND SOLID PHASES
OF THE HARD-SPHERE SYSTEM

A. Free energies and correlation functions of HS solids

In a solid the density profile can be approximated as a
sum of identical Gaussian peaks centered at the lattice sites

RW i,

rsrW d = o
i

rDsrW − RW id = Sa

p
D3/2

o
i

e−asrW − RW id
2
. s38d

Given the weighted functions in Sec. III the weighted
density can be written as

nasrW d = o
i

nD
sadsrW − RW id. s39d

Moreover, the scalar, vector, and tensor weighted densities
nD

sadsrWd can be found in analytical forms(see Appendix B).

For the fcc solid phase of a HS system, using the symme-
try of the crystal the volume of integration can be reduced to
a simplex corresponding to 1/48 of the unit cell[34]. The
contributions from all 13 sites of the unit cell(for fcc lattice)
to the total weighted densities can be calculated. For a given
bulk density the functional dependence of the solid free en-
ergy on the Gaussian parametera of density distribution[Eq.
(38)] was plotted in Fig. 1. The minimum of this function
gives the equilibrium values of free energy and parametera.
Figure 1 illustrates the different contributions from the de-
pendence ofbFHS/V on a for rd3=1.05 (whereFi =edrWFi,
i =1,2,3). For all versions of FMT exceptV1PY, Fig. 1 is
qualitatively the same.

The dependence of equilibrium free energybFHS/N on
the densitiesrd3 is shown in Fig. 2. The calculated results
are in excellent agreement with MC simulations[16].

The correlation function can be calculated using the ap-
proach of Rasconet al. [35,36]. In contrast to liquid phase,
the structural properties of a solid phase is mainly deter-
mined by one particle densityrsrWd. Let rsrW2d be the density
probability of finding a particle atrW2 without fixing any other
particles. The probability density of finding a second particle
at rW2 provided the first particle is already fixed atrW1 is equal
to rs2dsrW1,rW2d /rsrW1d. Thus, two angular average probability
densities can be defined

FIG. 1. Contributions of different terms in the free-energy func-
tional to the free-energy densitybFHS/V at rd3=1.05 usingT2CS.

FIG. 2. Dependence of the free-energy densitybFHS/N on rd3.
Results of the present theorysT2CSd are plotted as a solid line, MC
simulation results[16] as diamonds.
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g̃s0dsrd =
1

4pVr2E drW1dVrsrW1drsrW1 + rWd, s40d

and

g̃srd =
1

4pVr2 E drW1dVrs2dsrW1,rW1 + rWd, s41d

whereg̃s0dsrd is the correlation function when the particle at
the origin is not fixed andg̃srd is the correlation function,
which describes the structure of solid in the “external” field
of the particle fixed at the origin. It can be shown that the
function g̃srd should be used for the perturbation calculations
of the free energy in Eq.(18) [21].

Putting Eq.(38) into Eq.(40), the correlation functiong̃s0d

can be reduced to the sum of contributionsg̃i
s0d from the

successive peaks of lattice sites[35]

g̃ i
s0dsrd =

ni

4prRi
S a

2p
D1/2e−asr − Rid

2/2 + e−asr + Rid
2/2

r

si . 0d, s42d

whereni is the coordination number of shelli andRi being
the corresponding radius. Rasconet al. [35,36] showed that
for small value of compressibilityxT=s]r /]sbPddT (which is
the case for HS solids) the successive peaks ofg̃srd differ
negligibly from the ones ofg̃ s0dsrd except the first peak with
i =1, thus,

g̃srd = g̃1srd + o
iù2

g̃ i
s0dsrd. s43d

The first peak ofg̃srd (denoted asg̃1) is due to the nearest
neighbors which bear the most important part of the short-
range correlations and can be parametrized as[35]

g̃1srd = A
e−a1sr − r1d2/2

r
, s44d

where the parametersA, a1, and r1 can be found from the
sum rules conditions given below.

(1) Virial theorem:

bP/r = 1 + 4pg̃sdHSd. s45d

(2) The normalization ofg̃1 to the nearest-neighbors
number:

1

n1
E drWrg̃1srd = 1. s46d

(3) The mean location of the nearest neighborskrl:

krl ;
1

n1
E drWrrg̃1srd =

1

n1
E drWrrg̃ 1

s0dsrd. s47d

Using the already found dependence of pressureP anda on
the densityr in the equations above all the successive peaks
of g̃srd can be obtained.

We have calculated the correlation functions using the
different versions of the fundamental measure density-
functional theory. It is found(see Fig. 3) that the results of
the T2 versions of the theory gave the best agreement be-
tween the contact value of the correlation functions from our
calculation and MC simulations[11]. Thus, we are mostly
interested in theT2CSversion of the theory since it gives the
best liquid and solid properties. For this version the resulting
correlation functions agree very well with the MC results
[11] for the various densities(Figs 4 and 5). (For the low
densities the compressibilityxT gets higher and, thus, the
sum rule[Eq. (47)] gets less accurate[36]; as a result near
melting density the agreements get a bit worse. There are

FIG. 3. Details of the first peak of the pair distribution function
g̃srd for the solid atrd3=1.04 for MC simulation results[11] and
different versions of the fundamental measure density-functional
theory (DFT).

FIG. 4. Pair distribution functiong̃srd for the solid at rd3

=1.05. The solid line corresponds to the result of the present theory.
The dashed line is the Monte Carlo results[11].

FIG. 5. The same as Fig. 4 exceptrd3=1.35.
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also no significant differences also if any other DFT ap-
proaches are used.) Thus, all of our later calculations will be
based upon theT2CSversion of the DFT theory.

B. Correlation functions in HS liquid

In the homogeneous limit theT2CS version of the FM
functional reduces to the CS free energy[15],

bFHS/N = lnsrd3d − 1 +
hs4 − 3hd
s1 − hd2 , s48d

whereh=sp /6drd3 is the packing fraction.
To describe the HS liquid structure we note that in a liquid

phase the density profilersrW2d seen from the origin is just the
bulk densityr. Fixing a test particle at the origin leads to the
short-ranged density profile[37] rs2dsrW1,rW1+rWd /r=rgsrd. It
can be seen from Eqs.(40) and(41) that in the homogeneous
limit the correlation functiong̃ s0dsrd andg̃srd in solid reduce
to 1 andgsrd, respectively. Hence the pair distribution func-
tion in a liquidgsrd is equal to the density distributionrsrd of
particles in the external potential created by the test particle
fixed at the origin divided by the bulk densityr [37],

gsrd = rsrd/r. s49d

The density distributionrsrd can be calculated from the so-
lution of the integral equation obtained from the variational
principle for the grand canonical potentialVHS, Eqs.
(19)–(22) and (28)

rsrd = exph− dbFsexdfrsrWdg/drsrWd + b„m − Usrd…j s50d

with

bm = lnsrd3d + h
s8 − 9h + 3h2d

s1 − hd3 s51d

andUsrd=VHSsrd.
Note that similar equation as Eq.(50) was used in Ref.

[32], but for a different version of the Rosenfeld functional,
namely for one withF3= f3

sV1df3
sCSd (versionV1CS). The de-

tails for the calculation ofdbFsexd /drsrWd in Eq. (50) can be
found in Appendix C.

This integral equation(50) can be solved by the iteration
method, i.e., at itsi-step

rin
si+1d = rout

sid = Ârin
sid, s52d

whereÂ is the integral operator on the right-hand side of Eq.
(50). There is a problem for the convergence of the method,
namely the weighted functionn3srd at the smallr is higher
than 1, a signature thatF1 term is an approximation in three
dimension. To avoid this we used a mixing scheme,

rin
si+1d = krout

sid + s1 − kdrin
sid, s53d

with the small mixing parameterk, which depends on the
bulk density. To speed up drastically the convergency of it-
erations Eqs.(50), (51), and (53), we developed the special
optimization method. We have found that the correlation
functionsgsrd from theV1CSandT2CSversions of FMT for

low densitiesrd3 are almost the same, with the some differ-
ence arisen for the high densities. It is also seen from Fig. 6
that for all the densities that the DFT correlation functions
are in excellent agreement with the MC results of Verlet-
Weis [13] (for the high densityrd3=1.0 the agreements get a
bit worse).

The pair direct correlation functioncs2d in liquids can also
be obtained as the second functional derivative of the excess
free energy in the homogeneous limit. Since the present
functional employs the weight functions of FMT based on
one center convolutions it cannot accounts for the decaying
tail of cs2dsrd in the regionr .d. As a result the functiongsrd
obtained fromcs2dsrd via the Ornstein-Zernike equation does
not yield results which are in good agrement with the simu-
lations. Possible improvement of the theory requires the in-
clusion of the two-centers convolutions[19,33].

V. LENNARD-JONES LIQUID AND SOLID COEXISTENCE

In this section we will apply our method to a simple
model system with the Lennard-Jones(LJ) intermolecular
potential, whose liquid-solid coexistence behaviors are well
known from simulations,

VLJsrd = 4eSs12

r12 −
s6

r6 D , s54d

wheree ands are the energy and length parameters of the LJ
potential.

Using the correlation functions of the reference HS solid
and liquid from the DFT calculations the iterative solution of
the equation for the HS diameterd [Eq. (15)] can be found.
For some given temperaturesT* =kBT/e=0.75,2.74 and vari-
ous liquid and solid densitiesr* =rs3 the free energies
bFsexd /N=bF /N−lnsrd3d+1 both in liquid and solid phases
were obtained with the help of Eq.(18). Some of the results
are given in Table I and they are in excellent agreements with
the results of MC simulations[8,10].

At the fixed temperatureT the coexistence of solid and
liquid phases required the equality of the chemical potentials
m and pressuresP in the both phases. The coexisting liquid
rl

* and solidrs
* densities can be calculated using the Maxwell

double-tangent construction, i.e., the condition when

FIG. 6. Pair distribution functiongsrd of liquid at densities
rd3=0.7,0.8,0.9,1.0. The solid line is the result of our theory, the
dashed line is the result of MC simulations[13]. For clarity, curves
for rd3=0.8,0.9,1.0 are shifted upwards by 1,2,3, accordingly.
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bFsolid/N andbFliquid /N plotted versus the inverse densities
rs3 have a common tangent. ForT* =0.75 we found that the
coexisting densities and the Lindermann ratio arers

* =0.959,
rl

* =0.860 and 0.13; and forT* =2.74, rs
* =1.214,rl

* =1.155
and 0.12, which are very close to the results obtained by MC
simulations[38] rs

* =0.973, rl
* =0.875, 0.15 andrs

* =1.179,
rl

* =1.113, 0.14 respectively. If different theories would be
applied to computebFliquid /N andbFsolid/N the differences
in the models could affect significantly on the results of co-
existing densities. In our present approach the solid and liq-
uid free energies are obtained within a single theoretical
framework, thus, such errors are avoided.

VI. CONCLUSIONS

In the present study we have developed a theory to calcu-
late the free energies of liquid and solid phases within a
single theoretical framework. To this end the fundamental
measure DFT was applied to the theoretical calculations of

the free energies and correlation functions in HS liquid and
solid phases. These properties of the HS systems were used
in the WCA perturbation theory to calculate the free energies
both in solid and liquid phases of the Lennard-Jones system.
The obtained results are in a good agreement with simula-
tions.

The present study can be extended along several direc-
tions. For example, such a approach can be used to compute
phase behaviors of simple metallic systems[12] and also of
the multicomponent mixture(alloy) systems[39]. Another
possible application of this approach is the theoretical de-
scription of the solid-melting interface[40,41] of the differ-
ent substances.

ACKNOWLEDGMENTS

This research was sponsored in part by the Division of
Materials Sciences and Engineering, Office of Basic Energy
Sciences, U. S. Department of Energy, under Contract No.
W-7405-ENG-82 with Iowa State University(V.B.W. and
X.S.) and by NSF Grant No. CHE0303758(X.S.).

APPENDIX A: WEIGHTED DENSITIES IN THE LIQUID

At Appendixes A and B we summarize some properties of
the weighted densities(part of them was provided already
somewhere[29,34]) and also we will give some new details
of calculations.

To transform the expression for the weighted densities

[Eq. (23)] the vectoryW =rW−r8W can be introduced andy2= urW
−r8W u2=r2+r82−2rr 8 cosu (u is the angle between the vectors

rW and r8W ). With the fixedr = urWu and r8= ur8W u it follows that ur
−r8 u øyø r +r8 and r8 sin udu=1/r ydy sy= uyWud. Using this
the three-dimensional integral reduces to two one-
dimensional integrals

nasrWd =
2p

r
E

0

+`

r8dr8rsr8W dE
ur−r8u

r+r8
vasyWdydy. sA1d

Using the Rosenfeld expressions for the scalar, vector, and
tensor weight functions[Eqs. (24)–(27)] all the interested
weighted densities can be found. Such, the scalar weighted
densitiesn2 andn3 reduce to one-dimensional integrals

n2srd =
pd

r
E

ur−d/2u

r+d/2

dr8r8rsr8d sA2d

and

n3srd =
p

r
E

ur−d/2u

r+d/2

dr8r8Fd2

4
− sr − r8d2Grsr8d

+QSd

2
− rD4pE

0

d/2−r

dr8r82rsr8d. sA3d

To transform the expressions for vector and tensor densi-
ties we write

TABLE I. Excess(with respect to an ideal gas at the same
temperature and density) free energy per particlebFsexd /N for
the Lennard-Jones system obtained from MC simulations[8,10]
and the present theory. Values of the HS packing fractionh
=sp /6rd3d obtained in this work are also given.

bFsexd /N bFsexd /N h

MC simulations This work

T* =0.75

Liquid

0.7 −4.17 −4.15 0.393

0.8 −4.47 −4.45 0.448

0.84 −4.53 −4.50 0.469

Solid

1.0 −4.48 −4.52 0.566

1.025 −4.41 −4.47 0.574

1.1 −4.17 −4.11 0.595

T* =2.74

Liquid

0.2 −0.04 −0.03 0.098

0.4 −0.01 0.005 0.194

0.7 0.38 0.36 0.337

0.8 0.65 0.63 0.384

0.9 1.05 1.02 0.429

1.0 1.58 1.56 0.473

1.1 2.31 2.27 0.504

Solid

1.2 3.138 3.162 0.541

1.3 4.074 4.052 0.564

1.4 5.31 5.19 0.584

1.6 9.01 9.04 0.620

1.8 14.91 14.95 0.643

2.0 23.74 23.79 0.660

2.4 53.63 53.69 0.684
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eWy = cosũeWr + sin ũeW' sA4d

(ũ is the angle between the vectorsrW andyW; eWr andeW' the unit
vectors to be parallel and perpendicular to therW direction).
Using r82= urW−yWu2=r2+y2−2ry cosũ we find that

cosũ =
y2 + r2 − r82

2ry
,

sinũ =
f4r2r82 − sy2 − r2 − r82d2g1/2

2ry
. sA5d

Finally, putting Eqs.(26), (27), and (A5) into Eq. (A1) the
vectornWv2

and tensorn̂ weighted densities can be found as

nWv2
srWd = nv2

srdeW3,

n̂srWd = o
i=1

3

n̂iisrWd = o
i=1

3

niisrdeW ieW i , sA6d

whereeW1, eW2, andeW3 are the unit orthogonal vectorsseW3=eWrd
and

nv2
srd =

p

r2E
ur−d/2u

r+d/2

dr8r8Sr2 − r82 +
d2

4
Drsr8d, sA7d

n11srd = n22srd =
p

2r3d
E

ur−d/2u

r+d/2

dr8r8

3F4r2r82 − Sd2

4
− r82 − r2D2Grsr8d, sA8d

n33srd =
p

r3d
E

ur−d/2u

r+d/2

dr8r8Sd2

4
− r82 + r2D2

rsr8d. sA9d

From Eqs.(23)–(27) the relations,

nWv2
srWd = − ¹W n3srd, sA10d

trsn̂srWdd = n2srd, sA11d

also follow, which are useful to check the results.
In the bulk withrsrWd=r the expressions Eqs.(A2), (A3),

and (A7)–(A9) reduce just to

n2 = prd2, n3 =
p

6
rd3, nv2

= 0, nij =
p

3
rd2di j .

sA12d

APPENDIX B: WEIGHTED DENSITIES IN SOLID

When the densityrsrd is given by the Gaussian distribu-
tion around the zerorDsrd=sa /pd3/2exps−ar2d the corre-
sponding weighted densities can be found analytically from
Eqs.(A2), (A3), and(A6)–(A11),

nD
s2dsrd =

d

2r
Îa

p
se−asd/2 − rd2 − e−asd/2 + rd2d, sB1d

nD
s3dsrd =

1

2
FerfFÎaSd

2
+ rDG + erfFÎaSd

2
− rDG

+
e−asd/2 − rd2 − e−asd/2 + rd2

rÎap
G , sB2d

nD
sv2dsrd = S1 + e−2ard

1 − e−2ard −
1

ard
DnD

s2dsrd, sB3d

nD
s11dsrd = nD

s22dsrd =
nD

sv2dsrd
adr

,

nD
s33dsrd = nD

s2dsrd −
2nD

sv2dsrd
adr

. sB4d

The total scalar, vector, and tensor weighted densities are
the sum of the contributions from the different lattice sites
[Eq. (39)], moreover, the vector and tensor contributions
must be transformed to a common reference frame. To this
end we introduce the laboratory-fixed frameseWx,eWy,eWzd re-
lated to the crystal lattice planes. As a result the three posi-
tion (rW) dependent vectorseW1, eW2, andeW3 in Eq. (A6) can be
transformed as

eW isrWd = o
a8

ai,a8srdeWa8 si = 1,2,3;a8 = x,y,zd sB5d

with the transformation matrix[42]

A = hai,a8srdj =1
−

y

r

x

r
0

−
xz

rr
−

yz

rr

r

r

x

r

y

r

z

r

2 , sB6d

wherer=sx2+y2d1/2.
Finally, in the reference frame the contributions from one

lattice site to vector and tensor densities with help of Eqs.
(A6) and (B3)–(B6) are given by the expressions

nWD
sv2dsrWd = nD

sv2dsrdeW3srWd = o
a8

nD
sv2dsrda3,a8srdeWa8, sB7d

n̂DsrWd = o
i=1

3

nD
sii dsrdeW isrWdeW isrWd

= o
i=1

3

o
a8,b8

nD
sii dsrdai,a8srdai,b8srdeWa8eWb8. sB8d
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APPENDIX C: CALCULATION OF dbF„ex… /dr„r¢…

In this Appendix C we calculatedbFsexd /drsrWd which
arises in Eq.(50). It can be rewritten as

dbFsexdfrsrW dg/drsrWd = o
a

FasrW d, sC1d

where

FasrWd =E dr8W
dF

dnasr8W d
vasrW − r8W d. sC2d

So, the problem reduces to the calculation of everyFasrW d. To
do this, first of all the expression

FasrW d =
2p

r
E

0

+`

r8dr8
dF

dnasr8W d
E

ur−r8u

r+r8
vasyW dydy sC3d

can be obtained from Eq.(C2) by the same way as Eq.(23)
was transformed to Eq.(A1).

For the scalar weight functions witha=2,3Eqs.(A2) and
(A3) can be utilized forF2srd, F3srd [in this equations the
functions dF /dn2sr8d or dF /dn3sr8d should be substituted
insteadrsr8d].

To calculate the rest of the functionsFsrd we write

dF

dnWv2
sr8W d

=
dF

dnv2
sr8d

e8W 3, sC4d

dF

dn̂iisr8W d
=

dF

dniisr8d
e8W ie8W i si = 1,2,3d, sC5d

wheree8W 1, e8W 2, ande8W 3 are the unit orthogonal vectors(e8W 3 is

directed along the vectorr8W ).

Next, as it was done at Eqs.(A4) and (A5) the vectoreWy
can be written as

eWy = cosũ8e8W 3 + sin ũ8e8W ' sC6d

(ũ8 is angle between the vectorsyW and r8W ), and the expres-
sions

cos û8 =
y2 + r82 − r2

2r8y
,

sin û8 =
f4r2r82 − sy2 − r82 − r2d2g1/2

2r8y
sC7d

can be found.
Finally, putting Eqs.(26), (27), and (C4)–(C7) into Eq.

(C3) we have

Fv2
srd =

p

r
E

ur−d/2u

r+d/2

dr8Sd2

4
+ r82 − r2D dF

dnv2
sr8d

, sC8d

Fiisrd =
p

2rd
E

ur−d/2u

r+d/2

dr8
1

r8
F4r2r82 − Sd2

4
− r82 − r2D2G

3
dF

dniisr8d
si = 1,2d sC9d

and

F33srd =
p

rd
E

ur−d/2u

r+d/2

dr8
1

r8
Sd2

4
+ r82 − r2D2 dF

dn33sr8d
.

sC10d
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